
Final Report for Differentiable SPH

Yuqi Ren∗

Institute for Interdisciplinary Information Sciences
Tsinghua University

Beijing 100084, China
ryq22@mails.tsinghua.edu.cn

Supervisor: Hao Su
University of California San Diego

haosu@ucsd.edu

Abstract

Differentiable Smoothed Particle Hydrodynamics (SPH) is a promising approach
for gradient-based fluid optimization. To explore its capabilities, we implemented
a complete end-to-end pipeline featuring a differentiable SPH simulator and ren-
derer, and we verified its effectiveness on short-horizon fluid control tasks. How-
ever, when applied to long-horizon problems, we observed significant gradient
errors and numerical instability, rendering optimization infeasible. This prompted
a rigorous investigation into the source of this error accumulation. Through a
comparative analysis of gradients derived from automatic differentiation, high-
precision analytical methods, and finite differences, we identify the Hessian of the
SPH smoothing kernel within the pressure force derivative as the primary cause.

1 Introduction

Differentiable simulation has become a cornerstone for solving complex optimization and inverse
problems in fields ranging from robotics to computer graphics. Among various simulation tech-
niques, Smoothed Particle Hydrodynamics (SPH) is a widely-used method for modeling fluids. The
advent of differentiable SPH simulators allows for the direct computation of simulation gradients,
unlocking powerful gradient-based optimization for tasks like fluid control, parameter estimation,
and scene design.

However, a critical challenge severely hinders the broader adoption of this technology. While the
forward (simulation) pass of SPH is often stable, the backward pass (gradient computation) suf-
fers from exploding gradient error, especially over long simulation horizons. This phenomenon
introduces significant noise, rendering the gradients unreliable for optimization. Consequently, inte-
grating differentiable SPH with other components, such as a differentiable renderer for end-to-end
inverse rendering, becomes practically infeasible.

In this research, we develop a complete end-to-end pipeline that integrates a high-performance,
autograd-based SPH simulator with a custom differentiable renderer, demonstrating its effective-
ness on simple and short-horizon fluid control tasks. Furthermore, we seek to understand why the
gradients behaves so differently from the forward simulation and to pinpoint the specific components
of the gradient calculation that lead to instability.

∗Undergraduate student. Email: ryq22@mails.tsinghua.edu.cn

Final Report.

2 Related Work

2.1 SPH-based Simulation

Smoothed Particle Hydrodynamics (SPH) is a mesh-free, Lagrangian method originally developed
for astrophysical simulations [Lucy, 1977, Gingold and Monaghan, 1977]. Unlike grid-based Eu-
lerian methods, SPH discretizes the fluid continuum into a set of particles, each carrying physical
properties such as mass, velocity, and pressure. These properties are interpolated from neighboring
particles using a smoothing kernel function. Due to its natural ability to handle complex free sur-
faces and deformable boundaries, SPH has become a popular choice for fluid simulation in computer
graphics.

A primary challenge in SPH is enforcing fluid incompressibility. Early methods approached this
by computing particle pressures using an Equation of State (EOS). Standard SPH employs a low-
stiffness EOS [Desbrun and Gascuel, 1996], while Weakly Compressible SPH (WCSPH) utilizes
a much stiffer EOS to strictly limit density fluctuations, typically to under 1% [Monaghan, 2005,
Becker and Teschner, 2007, Becker et al., 2009]. However, this high stiffness parameter, which is
often difficult to tune, imposes restrictive time step constraints due to the Courant-Friedrichs-Lewy
(CFL) condition.

An alternative approach enforces incompressibility is projecting the velocity field onto a divergence-
free state, similar to Eulerian methods (e.g. [Enright et al., 2002]). This led to the family of Incom-
pressible SPH (ISPH) methods. While ISPH methods achieve low density fluctuations, they involve
formulating and solving a complex pressure Poisson equation. To balance computational cost and
stability, [Solenthaler and Pajarola, 2009] introduced Predictive-Corrective SPH (PCISPH), an it-
erative method that controls density errors within a user-defined tolerance. PCISPH successfully
combines the low computational cost of WCSPH with the large time steps characteristic of ISPH.

However, a key limitation of PCISPH is that it only enforces incompressibility at the density level.
Subsequent methods were developed to address this shortcoming, notably Local Poisson SPH (LP-
SPH) [He et al., 2012] and Divergence-Free SPH (DFSPH) [Bender and Koschier, 2015]. By enforc-
ing a divergence-free velocity field in addition to maintaining density constancy, these approaches
satisfy a stricter incompressibility constraint at both the density and velocity levels.

2.2 Differentiable Simulation

Differentiable simulation has recently emerged as a pivotal concept in computer graphics and ma-
chine learning. While significant progress has been made in developing differentiable simulators for
rigid-body dynamics [Freeman et al., 2021, Geilinger et al., 2020, Qiao et al., 2021, Xu et al., 2021],
soft-body dynamics [Du et al., 2021, Hahn et al., 2019, Hu et al., 2019b, Murthy et al., 2020], cloth
simulation [Li et al., 2022b, Liang et al., 2019], and Eulerian fluid dynamics [Du et al., 2020, Holl
et al., 2020, Li et al., 2022a, McNamara et al., 2004, Schenck and Fox, 2018, Li et al., 2024], their
Lagrangian fluid counterparts remain comparatively underexplored.Furthermore, it is worth noting
that some methods achieve differentiability by using neural networks to predict the solver’s output
[Holl et al., 2020, Schenck and Fox, 2018]. However, this black-box approach is typically slower
and less generalizable than simulators that are made differentiable by computing analytical gradients
directly through the physical equations [Li et al., 2024]. In the Lagrangian fluid domain, the work on
DiffRF by [Li et al., 2023], while proposing a differentiable SPH-based simulator with localized gra-
dient computation scheme, primarily focuses on the derivatives of fluid-rigid coupling forces. This
scope does not require tracking the evolution of fluid state derivatives over time, which marks a key
distinction from the aforementioned Eulerian differentiable fluid simulators that propagate gradients
through the entire state.

There are several typical methods for differentiating a simulator, including finite differences, auto-
differentiation, and the manual derivation of analytical gradients, as well as combinations thereof.
The complex-step finite difference has recently seen increasing attention [Luo et al., 2019, Shen et al.,
2021] for overcoming the drawbacks in the real number domain such as subtractive cancellation
issues. However, its computational overhead becomes significant when the number of parameters is
large. Auto-differentiation tools [Hu et al., 2019a,b] save the labor of manual derivation by storing
the computational graph on a "tape" during the forward pass and then backpropagating through the
graph to obtain gradients. To obtain the analytical gradient, [McNamara et al., 2004] develped the

2

adjoint method to efficiently compute the gradient of a fluid system for keyframe fluid animation
control. Another mothod to differentiate a simulator is symbolic differentiation, which computes
the derivative of a function by applying the chain rule repeatedly. However, the size of the symbolic
gradients grow rapidly with the complexity of the function. Therefore, symbolic differentiation is
typically only used when the dynamics are simple, or for a few select components of the simulator
[Geilinger et al., 2020, Hu et al., 2019b, Werling et al., 2021].

3 Contributions

Despite the extensive body of research on SPH-based simulation, work in the specific area of differ-
entiable SPH fluid simulation remains notably scarce. This research addresses this significant gap
by providing a comprehensive analysis of gradient instability in differentiable SPH and presenting a
functional end-to-end optimization pipeline. Our main contributions are:

• Identification of Gradient Instability Source: Through a rigorous ablation study and
high-precision numerical experiments, we pinpoint the primary source of exploding gradi-
ents in analytical differentiable SPH. We demonstrate conclusively that the instability arises
from the Hessian of the smoothing kernel, ∇(∇W), which is a component of the pressure
force derivative.

• End-to-End Differentiable Pipeline: We develop and validate a complete, end-to-end
differentiable pipeline for fluid control tasks. This system integrates a high-performance,
autograd-based SPH simulator (NVIDIA Warp) with a custom-built differentiable renderer,
enabling the optimization of physical parameters directly from image-space loss functions.

• Comparative Gradient Analysis Framework: We establish a robust framework for
analyzing gradient error by comparing results from three distinct methods: high-
performance automatic differentiation (NVIDIA Warp), high-precision analytical differen-
tiation (C++/Eigen), and finite differences as a ground truth. This multi-faceted approach
allows for a nuanced understanding of the trade-offs between performance, precision, and
stability in different gradient computation schemes.

4 Methodology

The motion of an incompressible fluid is governed by the Navier-Stokes (NS) equations, which
describe the conservation of momentum and mass:

Dv

Dt
= −1

ρ
∇p+∇ · (ν∇v) +

fext
ρ

(1)

∇ · v = 0 (2)

where D
Dt is the material derivative, v is the velocity, ρ is the fluid density, p is the pressure, ν

is the kinematic viscosity, and fext denotes external forces, such as gravity. To solve these equa-
tions numerically, we employ the PCISPH scheme to ensure stable and efficient enforcement of the
incompressibility constraint.

4.1 Time Integrating

We utilize a semi-implicit Euler method for time integration, which offers a balance between stability
and computational cost. The particle velocities and positions are updated as follows:

v(t+∆t) = v(t) + a(t)∆t (3)
x(t+∆t) = x(t) + v(t+∆t)∆t (4)

where a(t) is the acceleration at time t and ∆t is the time step.

3

4.2 PCISPH

The core of the PCISPH method is an iterative prediction-correction loop that adjusts particle pres-
sures to minimize density fluctuations, thereby satisfying the incompressibility condition. The over-
all procedure is detailed in Algorithm 1, and the key calculations within this framework are described
in the following sections.

4.2.1 Density Estimation

The density ρi of a particle i at location xi is computed by summing up the weighted contributions
of the neighboring particles j:

ρi =
∑
j

mjW (xij , h) =
∑
j

mjWij (5)

where mj is the mass of neighboring particle j, W is the weighting kernel function with a smoothing
length h, and xij = xi − xj .

4.2.2 Pressure Correction

In the PCISPH method, the pressure correction term pi for particle i is computed to counteract
density errors:

pi = δiρ
∗
err,i (6)

δi =
1

αi

(∑
j ∇Wij ·

∑
j Wij +

∑
j (∇Wij ·Wij)

) (7)

where αi =
2m2

i∆t2

ρ0
2
i

, ρ0i is the reference density, ρ∗err,i = ρ∗i − ρ0i is the predicted density error,
and δi is a scaling factor which is evaluated for a prototype particle with a filled neighborhood.

4.2.3 Force Discretization

The only external force considered in our simulations is gravity:

fext,i = mig (8)

The pressure force is derived from the pressure gradient term in the Navier-Stokes equation and is
discretized symmetrically to conserve momentum:

fpi = −
∑
j

mimj

(
pi
ρ2i

+
pj
ρ2j

)
∇Wij (9)

The viscous force is modeled as:

fvi = 2(d+ 2)ν
∑
j

mimj

ρiρj

vij · xij

∥xij∥2 + 0.01h2
∇Wij (10)

where d is the number of spatial dimensions and vij = vi − vj .

4.3 Differentiable PCISPH

To enable gradient-based optimization of physical parameters, we formulate a differentiable version
of the PCISPH solver. This involves deriving the analytical gradients of all relevant quantities with
respect to a general optimization parameter vector x. The complete algorithm for the differentiable
PCISPH solver is illustrated in Algorithm 2.

4

Algorithm 1 PCISPH

for all i do
find neighborhoods Ni(t)

for all i do
compute forces fvi(t), fext,i(t)
initialize pressure pi(t) = 0
initialize pressure force fpi(t) = 0

while
(
ρ∗err,avg(t+∆t)

)
< η || (iter < minIterations) do

for all i do
predict velocity v∗

i (t+∆t)
predict position x∗

i (t+∆t)
for all i do

predict density ρ∗i (t+∆t)
predict density variation ρ∗err,i(t+∆t)
compute pressure pi(t)

for all i do
compute pressure force fpi(t)

for all i do
compute new velocity vi(t+∆t)
compute new position xi(t+∆t)

4.3.1 Differentiate Pressure

The derivatives of density and pressure with respect to s are found by applying the chain rule:

dρi
ds

=
∑
j

mj∇WT
ij

dxij

ds
(11)

dpi
ds

= δi
dρi
ds

= δi
∑
j

mj∇WT
ij

dxij

ds
(12)

4.3.2 Differentiate Force

The derivatives of the pressure and viscous forces are derived accordingly.

dfpi
ds

=−
∑
j

mimj

(
pi
ρ2i

+
pj
ρ2j

)
∇(∇W)T

dxij

ds

+
∑
j

mimj

(
2pi − δiρi

ρ3i

dρi
ds

+
2pj − δjρj

ρ3j

dρj
ds

)
∇Wij (13)

For convenience, we define a term γ = 2(d+ 2µ). The derivative of the viscous force is then given
by:

dfvi
ds

=− γ
∑
j

mimj

ρiρj

(
1

ρi

dρi
ds

+
1

ρj

dρj
ds

)
vij · xij

∥xij∥2 + 0.01h2
∇Wij

+ γ
∑
j

mimj

ρiρj

vij · xij

∥xij∥2 + 0.01h2
∇(∇Wij)

T dxij

ds

+ γ
∑
j

mimj

ρiρj

 dvij

ds · xij + vij · dxij

ds

∥xij∥2 + 0.01h2
− 2

(vij · xij)
(
xij · dxij

ds

)
(∥xij∥2 + 0.01h2)

2

∇Wij (14)

5

Algorithm 2 Differentiable PCISPH

for all i do
find neighborhoods Ni(t)

for all i do
compute forces fvi(t), fext,i(t)
compute forces’ gradients dfvi(t)

ds , dfext,i(t)
ds

initialize pressure pi(t) = 0
initialize pressure force fpi(t) = 0

while
(
ρ∗err,avg(t+∆t)

)
< η || (iter < minIterations) do

for all i do
predict velocity v∗

i (t+∆t)
predict position x∗

i (t+∆t)

compute predicted velocity’s gradient dv∗
i (t+∆t)
ds

compute predicted position’s gradient dx∗
i (t+∆t)
ds

for all i do
predict density ρ∗i (t+∆t)
predict density variation ρ∗err,i(t+∆t)
compute pressure pi(t)

compute predicted density’s gradient dρ∗
i (t+∆t)
ds

compute pressure’s gradient dpi(t+∆t)
ds

for all i do
compute pressure force fpi(t)

compute pressure force’s gradient dfpi(t)
ds

for all i do
compute new velocity vi(t+∆t)
compute new position xi(t+∆t)

compute new velocity’s gradient dvi(t+∆t)
ds

compute new position’s gradient dxi(t+∆t)
ds

4.4 Multi-fluid PCISPH

To extend our model to incompressible multi-fluid systems, which is required in our latte art op-
timization task, we employ the Navier-Stokes-Cahn-Hilliard (NSCH) equations, following the ap-
proach of [Yang et al., 2015]. The NSCH equations for an n-phase fluid, neglecting the reactive
stress term, are given as:

Dv

Dt
= −1

ρ
∇p+∇ · (ν∇v) +

fext
ρ

∇ · v = 0

Dck
Dt

= ∇ · (M∇µk) (15)

µk =
∂F

∂ck
− ϵ2∇2ck − 1

n

∑
k′

∂F

∂ck′
(16)

where ck is the mass fraction of phase k, µk is its chemical potential, M is the degenerate mobility,
ϵ is a parameter related to the diffuse-interface thickness, and F is the Helmholtz free energy. The
spatial discretization of the Cahn-Hilliard terms is performed using SPH approximations similar to
those used for the standard fluid dynamics terms:

6

∇µi = ρi
∑
j

mj

(
µi

ρ2i
+

µj

ρ2j

)
∇Wij (17)

∇ · (Mi∇µi) =
∑
j

mj

ρj
(Mi +Mj)µij

xij · ∇Wij

∥xij∥2 + 0.01h2
(18)

∇2ci = 2
∑
j

mj

ρj
cij

xij · ∇Wij

∥xij∥2 + 0.01h2
(19)

The complete algorithm for the multi-fluid PCISPH solver is presented in Algorithm 3.

Algorithm 3 Multi-Phase PCISPH

for all i do
find neighborhoods Ni(t)

for all i do
compute mass mi(t)
compute density ρi(t)
compute chemical potential µi(t)
compute new mass ratio ci(t+∆t)

for all i do
compute new mass m′

i(t)
compute new density ρ′i(t)
compute forces fvi(t), fext,i(t)
initialize pressure pi(t) = 0
initialize pressure force fpi(t) = 0

while
(
ρ∗err,avg(t+∆t)

)
< η || (iter < minIterations) do

for all i do
predict velocity v∗

i (t+∆t)
predict position x∗

i (t+∆t)
for all i do

predict density ρ∗i (t+∆t)
predict density variation ρ∗err,i(t+∆t)
compute pressure pi(t)

for all i do
compute pressure forces fpi(t)

for all i do
compute new velocity vi(t+∆t)
compute new position xi(t+∆t)

5 Implementation

5.1 Framework

To build an end-to-end pipeline for optimizing latte art patterns, we utilize NVIDIA Warp, a Python
framework for high-performance GPU computing. Warp’s kernel-based programming model allows
us to efficiently parallelize the SPH computations and utilize HashGrid data structure. Crucially,
we utilize Warp’s built-in automatic differentiation (AD) capabilities, specifically its Tape object, to
compute gradients for optimization.

For the purpose of validating our gradients and analyzing their error, we also developed a C++/Eigen
implementation. This allows us to derive and verify the analytical gradients with the precision
offered by float64 or float80 data types, which is critical for gradient accuracy analysis.

7

5.2 Challenges

A primary challenge during implementation was managing numerical precision. The NVIDIA Warp
framework, while highly efficient, has limited support for double-precision (float64) floating-point
numbers in some of its core functions, particularly within the HashGrid data structure. This limita-
tion makes it difficult to directly transfer and validate high-precision data types required for accurate
gradient calculations.

To overcome this, we adopted a dual-pronged approach. The forward simulation and automatic dif-
ferentiation for large-scale optimization tasks are performed in Warp using single-precision (float32)
for maximum performance. For gradient validation and error analysis, we conduct smaller-scale
tests using our C++/Eigen implementation, where we can compute the analytical gradients with
high precision and establish a reliable ground truth. For multithreaded acceleration, we also use the
OpemMP library.

5.3 Differentiable Rendering

To complete our end-to-end optimization pipeline, a differentiable renderer is required to connect
the image-based loss with the fluid simulator. We implement this by first calculating a color field on
a 3D grid, which utilizes the same spatial hashing structure as the simulator. The color at each grid
node is computed in a manner analogous to SPH, by summing the weighted color contributions of
all neighboring particles. From this 3D color grid, we then generate the final 2D image. The color of
each pixel is determined through differentiable interpolation from the grid, ensuring that the entire
rendering process is differentiable and that gradients can flow from the image-space loss back to the
particle positions.

6 Experimental Results

6.1 Experimental Setup

All experiments were conducted on a system equipped with an NVIDIA RTX 4090 GPU and an Intel
Core i9-13900K CPU. For optimization tasks, we utilized the Adam optimizer provided within the
NVIDIA Warp framework, with the gravitational acceleration, g, serving as the primary optimiza-
tion parameter. For analyzing gradients error, we utilized C++ and Eigen. The specific simulation
parameters, such as particle counts, time step sizes, are detailed in each of the following experimen-
tal sections.

6.2 Latte Art Optimization

This section demonstrates the effectiveness of our end-to-end differentiable pipeline, combining the
differentiable simulator and renderer to solve a control problem.

6.2.1 Differentiable Rendering

To verify that our differentiable renderer is functioning correctly, we perform an optimization task to
arrange particle positions to match a target image. As shown in Figure 1, the optimization success-
fully rearranges an initial particle distribution into the desired pattern, demonstrating that meaningful
gradients are being propagated from the image-space loss back to the particle positions.

6.2.2 Differentiable Simulation Validation

We first validate the gradients produced by Warp’s automatic differentiation (autograd) system. The
simulation involves approximately 8,000 particles with a time step of 0.0028s, using single-precision
(float32) arithmetic. The loss is defined as the squared L2 norm between the final and target particle
positions: L =

∑
∥xfinal − xtarget,final∥2. Figure 2 shows the convergence of the loss function

during optimization, confirming that the gradients are effective for minimization.

However, we observe that the error of the autograd gradients accumulates over time. We conduct an
experiment with approximately 8,000 particles and a time step of 0.0028s, optimizing based on an
image-space loss: L =

∑
∥Imagefinal − Imagetarget,final∥2. Figure 3 compares the gradient

8

(a) Initial State (Step 0) (b) Step 120 (c) Step 180 (d) Final State (Step 240)

Figure 1: Optimization progress using the differentiable renderer to match a target image. The
particles are successfully rearranged, confirming the renderer’s functionality.

Figure 2: Loss curve for the latte art optimization task over 120 steps using the Adam optimizer,
demonstrating effective gradient-based minimization.

values computed via autograd and finite differences (FD) over simulations of varying lengths. The
FD gradients remain stable, whereas the autograd gradients diverge as the simulation progresses.
This suggests that for long-horizon simulations, the accumulation of floating-point errors in autograd
can become a significant issue.

6.3 Gradients Error Analysis

To better analyze the analytical gradient errors, particularly to study the contributions of different
force derivatives and test various numerical precisions, we utilized our C++/Eigen implementation.
This setup allows for high-precision computations in a simulation with 125 particles and a time step
of 0.0021s.

6.3.1 Analytical vs. Finite Difference Gradients

We first compare our derived analytical gradients against finite difference gradients under varying
gravity and numerical precision (float32, float64, float80). As shown in Figure 4, the finite difference
gradients are stable and consistent across all precisions. In contrast, the analytical gradients exhibit
significant variance, with the error increasing substantially at higher precisions and under stronger
gravitational forces.

6.3.2 Ablation Study of Force Contributions

To identify the source of the analytical gradient error, we perform an ablation study where we sys-
tematically remove force components. We compare the full simulation (base case) against scenarios
with no pressure force, no viscous force, and neither. Figures 5 and 6 show the gradient norm over
the simulation frames for finite differences and our analytical method, respectively. The finite dif-

9

(a) Frame Number = 25 (b) Frame Number = 30

(c) Frame Number = 35 (d) Frame Number = 40

Figure 3: Comparison of gradient magnitudes from autograd vs. finite differences for simulations
of increasing length. As the frame number increases, the autograd gradient error grows, while the
finite difference gradient remains stable.

ference gradients remain stable in all cases. The analytical gradients, however, only become stable
when the pressure force term is removed. This strongly indicates that the pressure force derivative
is the primary source of numerical instability and error.

6.3.3 Analysis of the Pressure Gradient Term

The derivative of the pressure force consists of two main terms, as shown in Equation 13. To pinpoint
the cause of the instability, we analyze the contribution of each term individually. Figure 7 plots the
norm of the full pressure gradient, the first term alone, and the second term alone, all computed at
float32 precision. The results clearly show that the first term, which contains the Hessian of the
smoothing kernel ∇(∇W), is the dominant factor causing the gradient to diverge.

10

(a) Finite Difference Gradients (b) Analytical Gradients

Figure 4: Comparison of gradient magnitudes vs. gravity. Finite difference gradients (left) are stable
across precisions, while analytical gradients (right) are sensitive to both precision and the magnitude
of external forces.

(a) Base Case (All Forces) (b) No Pressure Force

(c) No Pressure or Viscous Force (d) No Viscous Force

Figure 5: Finite difference gradient norm vs. frame number under different force configurations.
The gradients remain stable regardless of which forces are included.

11

(a) Base Case (All Forces) (b) No Pressure Force

(c) No Pressure or Viscous Force (d) No Viscous Force

Figure 6: Analytical gradient norm vs. frame number under different force configurations. The
gradient norm is stable only when the pressure force is removed.

Figure 7: Analysis of the Pressure Gradient Term

12

7 Discussion

Our experimental results demonstrate both the potential and the pitfalls of differentiable SPH simu-
lation. The latte art optimization confirms that an end-to-end, gradient-based pipeline is viable for
fluid control, especially for short-horizon tasks. The convergence validates that both the autograd-
based simulator and our custom renderer produce meaningful gradients.

However, our core finding is the identification of a fundamental numerical instability in the analyt-
ical gradient (also in autograd). The ablation study decisively isolates the pressure force derivative
as the source of this instability, with further analysis pinpointing the Hessian of the smoothing ker-
nel, ∇(∇W), as the specific culprit. This term, which is absent in the forward pass, introduces
high-frequency errors that cause the gradient to explode during backpropagation. This explains the
divergence between the unstable analytical method and the stable finite difference method. The pri-
mary limitation of this work is that while we identify the source of the error, we do not yet propose
a solution.

8 Conclusion and Future Work

In this research, we developed an end-to-end differentiable pipeline for SPH-based fluid control and
conducted a rigorous analysis of gradient computation. Our key contribution is the identification of
the pressure force term’s derivative, specifically the kernel Hessian ∇(∇W), as the primary source
of instability in analytical gradient calculations.

This work reveals that neither standard autograd nor direct analytical differentiation is sufficient
for robust, long-horizon differentiable SPH. Based on this, future work will focus on the following
directions:

• Stabilizing the Pressure Gradient: Develop methods to stabilize or bypass the problem-
atic ∇(∇W) term, perhaps through alternative SPH pressure formulations or regularization
techniques applied only during the backward pass.

• Hybrid Differentiation Methods: Investigate hybrid approaches that combine the
strengths of different methods, such as using analytical gradients for stable terms and a
more robust approximation for the pressure term.

• Application to Long-Horizon Problems: Once a more stable gradient computation
method is developed, apply the pipeline to more challenging, long-horizon control and
inverse problems to validate its effectiveness.

By addressing this fundamental instability, this research paves the way for making differentiable
SPH a more reliable and widely applicable tool.

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Prof. Hao Su, for his invaluable
guidance and support throughout this research. And I also extend my thanks to Xiaodi and Fanbo
for their insightful advice and fruitful discussions during the course of this project.

References
Markus Becker and Matthias Teschner. Weakly compressible sph for free surface flows. In Pro-

ceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages
209–217, 2007.

Markus Becker, Hendrik Tessendorf, and Matthias Teschner. Direct forcing for lagrangian rigid-fluid
coupling. IEEE Transactions on Visualization and Computer Graphics, 15(3):493–503, 2009.

Jan Bender and Dan Koschier. Divergence-free smoothed particle hydrodynamics. In Proceedings
of the 14th ACM SIGGRAPH/Eurographics symposium on computer animation, pages 147–155,
2015.

13

Mathieu Desbrun and Marie-Paule Gascuel. Smoothed particles: A new paradigm for animating
highly deformable bodies. In Computer Animation and Simulation96: Proceedings of the Eu-
rographics Workshop in Poitiers, France, August 31–September 1, 1996, pages 61–76. Springer,
1996.

Tao Du, Kui Wu, Andrew Spielberg, Wojciech Matusik, Bo Zhu, and Eftychios Sifakis. Functional
optimization of fluidic devices with differentiable stokes flow. ACM Transactions on Graphics
(TOG), 39(6):1–15, 2020.

Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and Wojciech
Matusik. Diffpd: Differentiable projective dynamics. ACM Transactions on Graphics (ToG), 41
(2):1–21, 2021.

Douglas Enright, Stephen Marschner, and Ronald Fedkiw. Animation and rendering of complex wa-
ter surfaces. In Proceedings of the 29th annual conference on Computer graphics and interactive
techniques, pages 736–744, 2002.

C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax–a differentiable physics engine for large scale rigid body simulation. arXiv preprint
arXiv:2106.13281, 2021.

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski, and Stelian
Coros. Add: Analytically differentiable dynamics for multi-body systems with frictional contact.
ACM Transactions on Graphics (TOG), 39(6):1–15, 2020.

Robert A Gingold and Joseph J Monaghan. Smoothed particle hydrodynamics: theory and applica-
tion to non-spherical stars. Monthly notices of the royal astronomical society, 181(3):375–389,
1977.

David Hahn, Pol Banzet, James M Bern, and Stelian Coros. Real2sim: Visco-elastic parameter
estimation from dynamic motion. ACM Transactions on Graphics (TOG), 38(6):1–13, 2019.

Xiaowei He, Ning Liu, Sheng Li, Hongan Wang, and Guoping Wang. Local poisson sph for viscous
incompressible fluids. In Computer Graphics Forum, volume 31, pages 1948–1958. Wiley Online
Library, 2012.

Philipp Holl, Vladlen Koltun, Kiwon Um, and Nils Thuerey. phiflow: A differentiable pde solving
framework for deep learning via physical simulations. In NeurIPS workshop, volume 2, 2020.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and
Frédo Durand. Difftaichi: Differentiable programming for physical simulation. arXiv preprint
arXiv:1910.00935, 2019a.

Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B Tenenbaum, William T Freeman, Jiajun
Wu, Daniela Rus, and Wojciech Matusik. Chainqueen: A real-time differentiable physical simula-
tor for soft robotics. In 2019 International conference on robotics and automation (ICRA), pages
6265–6271. IEEE, 2019b.

Yifei Li, Tao Du, Sangeetha Grama Srinivasan, Kui Wu, Bo Zhu, Eftychios Sifakis, and Wojciech
Matusik. Fluidic topology optimization with an anisotropic mixture model. ACM Transactions
on Graphics (TOG), 41(6):1–14, 2022a.

Yifei Li, Tao Du, Kui Wu, Jie Xu, and Wojciech Matusik. Diffcloth: Differentiable cloth simulation
with dry frictional contact. ACM Transactions on Graphics (TOG), 42(1):1–20, 2022b.

Yifei Li, Yuchen Sun, Pingchuan Ma, Eftychios Sifakis, Tao Du, Bo Zhu, and Wojciech Matusik.
Neuralfluid: Nueral fluidic system design and control with differentiable simulation. Advances in
Neural Information Processing Systems, 37:84944–84967, 2024.

Zhehao Li, Qingyu Xu, Xiaohan Ye, Bo Ren, and Ligang Liu. Difffr: Differentiable sph-based
fluid-rigid coupling for rigid body control. ACM Transactions on Graphics (TOG), 42(6):1–17,
2023.

14

Junbang Liang, Ming Lin, and Vladlen Koltun. Differentiable cloth simulation for inverse problems.
Advances in neural information processing systems, 32, 2019.

Leon B Lucy. A numerical approach to the testing of the fission hypothesis. Astronomical Journal,
vol. 82, Dec. 1977, p. 1013-1024., 82:1013–1024, 1977.

Ran Luo, Weiwei Xu, Tianjia Shao, Hongyi Xu, and Yin Yang. Accelerated complex-step finite
difference for expedient deformable simulation. ACM Transactions on Graphics (TOG), 38(6):
1–16, 2019.

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. Fluid control using the adjoint
method. ACM Transactions On Graphics (TOG), 23(3):449–456, 2004.

Joe J Monaghan. Smoothed particle hydrodynamics. Reports on progress in physics, 68(8):1703,
2005.

J Krishna Murthy, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin Weiss,
Breandan Considine, Jérôme Parent-Lévesque, Kevin Xie, Kenny Erleben, et al. gradsim: Differ-
entiable simulation for system identification and visuomotor control. In International conference
on learning representations, 2020.

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming C Lin. Efficient differentiable simulation of
articulated bodies. In International Conference on Machine Learning, pages 8661–8671. PMLR,
2021.

Connor Schenck and Dieter Fox. Spnets: Differentiable fluid dynamics for deep neural networks. In
Conference on Robot Learning, pages 317–335. PMLR, 2018.

Siyuan Shen, Yang Yin, Tianjia Shao, He Wang, Chenfanfu Jiang, Lei Lan, and Kun Zhou. High-
order differentiable autoencoder for nonlinear model reduction. arXiv preprint arXiv:2102.11026,
2021.

Barbara Solenthaler and Renato Pajarola. Predictive-corrective incompressible sph. In ACM SIG-
GRApH 2009 papers, pages 1–6. 2009.

Keenon Werling, Dalton Omens, Jeongseok Lee, Ioannis Exarchos, and C Karen Liu. Fast and
feature-complete differentiable physics for articulated rigid bodies with contact. arXiv preprint
arXiv:2103.16021, 2021.

Jie Xu, Tao Chen, Lara Zlokapa, Michael Foshey, Wojciech Matusik, Shinjiro Sueda, and Pulkit
Agrawal. An end-to-end differentiable framework for contact-aware robot design. arXiv preprint
arXiv:2107.07501, 2021.

Tao Yang, Jian Chang, Bo Ren, Ming C Lin, Jian Jun Zhang, and Shi-Min Hu. Fast multiple-
fluid simulation using helmholtz free energy. ACM Transactions on Graphics (TOG), 34(6):1–11,
2015.

15

	Introduction
	Related Work
	SPH-based Simulation
	Differentiable Simulation

	Contributions
	Methodology
	Time Integrating
	PCISPH
	Density Estimation
	Pressure Correction
	Force Discretization

	Differentiable PCISPH
	Differentiate Pressure
	Differentiate Force

	Multi-fluid PCISPH

	Implementation
	Framework
	Challenges
	Differentiable Rendering

	Experimental Results
	Experimental Setup
	Latte Art Optimization
	Differentiable Rendering
	Differentiable Simulation Validation

	Gradients Error Analysis
	Analytical vs. Finite Difference Gradients
	Ablation Study of Force Contributions
	Analysis of the Pressure Gradient Term

	Discussion
	Conclusion and Future Work

